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Abstract: This paper compares fault position and Monte Carlo methods as the most 

common methods in stochastic assessment of voltage sags. To compare their abilities, 

symmetrical and unsymmetrical faults with different probability distribution of fault 

positions along the lines are applied in a test system. The voltage sag magnitude in different 

nodes of test system is calculated. The problem with these two methods is that they require 

unknown number of iteration in Monte Carlo Method and number of fault position to 

converge to an acceptable solution. This paper proposes a method based on characteristic 

behavior of Monte Carlo simulations for determination required number of iteration in 

Monte Carlo method. 
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1 Introduction 1 

Voltage sag and interruption are two most serious power 

quality problems responsible for frequent malfunctions 

of electrical equipments in industrial and commercial 

installation [1]. Voltage sag indices are used for simpler 

description, quantification and comparison of 

characteristic and performance of different events, sites 

or systems. The indices are very important part in 

addressing voltage sag issues, because they often serve 

as a “specification values” in contracts between the 

utilities and customers. For example, system average 

RMS variation frequency index (SARFIx) of single-site, 

provides a count of all voltage sags for a site which are 

bellow voltage threshold X and with duration less than 

60 seconds and SARFIx system index is calculated as 

the number of sites experiencing at least one SARFIx 

single- site index divided by the number of all sites in 

the system [2]. 

The calculation of voltage sag indices can be based 

on actual measurement [3-4] or by using stochastic 

prediction methods. Without any doubt, the major cause 

of voltage sags are short circuit faults in power supply 

system and inside the customer’s installation. Stochastic 

methods (critical distances [5], fault positions, Monte 

Carlo) have been proposed for the assessment of voltage 

sag due to faults [6]-[8]. 
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The method of critical distance provides accurate 

results for the stochastic assessment of voltage sag but it 

requires high computational effect that becomes even 

more complex for larger networks. The method of fault 

position and the Monte Carlo method are simpler and 

easier to implement [3]. 

The problem in these two methods is that they 

require unknown number of fault position and iteration 

to converge to an acceptable solution and it's very 

important especially in large networks. 

Ref. [8] talks about the minimum required number of 

iterations assumed by the Monte Carlo method to an 

acceptable solution but it doesn't mention any practical 

method. 

This paper compares the abilities of fault position 

and Monte Carlo method by applying symmetrical and 

unsymmetrical faults with different probability 

distribution of fault position along the lines to reach 

balanced and unbalanced voltage sag. Furthermore, this 

paper presents an appropriate method based on 

characteristic behavior of Monte Carlo simulations for 

determination required number of iteration in Monte 

Carlo method and can be applied to large networks 

easily. 

It is organized as follows; Section 2 presents sample 

test system, Sections 3 and 4 briefly recalls the 

principles of fault position and Monte Carlo methods. 

The effect of different probability distribution of fault 

positions is described in Section 5. In Section 6 a new 

method to determine number of iteration in Monte Carlo 

method is proposed. In Section 7 conclusions are drawn. 
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Fig. 1 Sample test system. 

 

 

2 Test System  

The diagram of the test system is shown in Fig. 1. 

Seven critical customers are connected at seven nodes 

of the same 20 kV distribution line (60 km total length) 

through a solidly grounded delta wye transformer. It 

should be noted that this network represents a typical 

distribution network with several hundred nodes spread 

along the main feeder and laterals. 

The nodes that supply the most critical customer need to 

be examined. The equivalent transmission system 

consists of five 132 kV lines and is relatively of large 

size (1150 km total length). 

 

3 Fault Position Method 

In the method of fault position the voltage in every 

bus is calculated for various fault positions spread at 

equal distances for each line. One drawback of the 

method of fault positions is the lack of clarity in the 

appropriate number of fault positions to be considered. 

The more fault positions procedure the more accurate 

procedure. In the limit situation, infinite number of 

faults should be simulated until the results remain 

unaltered. 

Two cases have been considered: 

Case 1: voltage sags in bus 1 to 7 due to faults in 

distribution system. 

At equal distances of each line and for each type of 

fault 600 faults have been applied. The worth of each 

type is considered by using the distribution probability 

of fault type in Fig. 2. Cumulative annual frequency of 

dips at bus 1 to 7 is shown in Fig. 3. 

Case 2: voltage sags for each bus in distribution system 

due to faults at the transmission system. 

The effect of power transformer on voltage sag is 

considered. To do this, 2000 faults in equal distance of 

transmission system for each fault type are applied. The 

worth of each type is considered by Fig. 2. The result is 

shown in Fig. 4. Because of transmission system 

configuration, it is clear that bus 8 is influenced by 

every fault in transmission system. It shows this fact 

that faults event at 100 km away from the customers 

will cause sever sags. 
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Fig. 2 Probability for each fault type in 20 kV and 132 kV. 
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(a) 
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(b) 
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(c) 
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(d) 
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(e) 
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(f) 
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(g) 

 

Fig. 3 Cumulative sags frequency at nodes 1-7 (Contribution of balanced and unbalanced sags are shown). 
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Fig. 4 Cumulative sags frequency at nodes 1-7 due to faults in transmission system. 

 

 

4 Monte Carlo Method 

Monte Carlo simulation is a powerful numerical 

technique for solving stochastic problems by modeling 

random variables. The key factor in Monte Carlo 

simulation is the use of random numbers to model the 

behavior of stochastic variables involved in the process. 

Instead of using just the average value to model 

uncertain variables, the complete distribution function is 

used number of iterations to describe their behavior. 

This of course requires more information regarding the 

historical performance of the system. After an infinite 

number of iterations, the response of the system studied 

converges to a solution theoretically  

In the procedure of voltage sag assessment with 

Monte Carlo method assumes that sags are due only to 

faults caused with the distribution network. Random 

variables in our case are mean-time-to-fault, fault 

position and fault type. Every time the system is run, 

several quantities are randomly generated prior to 

calculations. Voltage sag characteristics at the nodes are 

recorded every run. At the end of simulation time, the 

SARFIx at the nodes is calculated. 

The algorithm implemented can be summarized as 

follows: 

1- Set a simulation time in years. 

2- For each element (line or bus) generate a random 

number and convert it into time-to-fault according 

to the probability of distribution function of the 

time-to-fault of the element. Calculate the 

cumulative time. 

3- Select the fault location by generating random 

number and convert it into fault position according 
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to the probability distribution function of this 

parameter. 

4- For each fault, generate a random number and 

convert it into fault type (SLG, LL, LLG and LLL) 

according to the probability distribution function of 

the fault type. 

5- Calculate the residual voltage at the buses. 

6- If cumulative time is less than the simulation time, 

go to 2. 

7- Out put results. 

 

Simulation Parameters: 

• The mean-time-to-fault is taken as the reciprocal of 

the fault rate (1 faults/year-km). This parameter for 60 

km distribution radial system is 0.0167 years. This 

parameter is assumed uniformly distributed. It means 

that for each year, distribution system has exactly 60 

faults. 

• The fault resistance is 0 ohm. 

• The probability of each type of fault is assumed as 

Fig. 2. 

• The fault location is assumed uniformly distributed 

along each line. 

 

The test system is run for 50 years and the results are 

cumulative sag frequency for each node. Fig. 5 

compares the results of Monte Carlo and fault position 

method at node 1. The comparisons are made in the 

range 0.1-0.9 p.u. 

Fig. 5 shows that with above conditions and 

parameters Monte Carlo and fault position method have 

the same results. Two main parameters that are 

important to consider are the probability distribution of 

fault position and number of iteration that Monte Carlo 

converges to an acceptable solution. 

 

5 The Effect of Different Probability Distribution 

of Fault Positions 

The effect of probability distribution of fault 

position in Mont Carlo method is studied in three 

different cases in distribution network. Each line is 10 

km (20 × 0.5 km). 

 

Case1: 

It is assumed that probability of fault events in 

middle points of lines is more than the other points. For 

achievement of this assumption, the fault position is 

considered normally distributed with a mean value of 

half of the line and a standard deviation of s in each line 

as follow relation: 

 

2

2

(l )

2.s
1

f (l) .e
s. 2

µ

π

− −− −− −− −

====  (1) 

 

Fig. 6 shows normal distribution with different 

amount of s. If fault position is distributed normally like 

Fig. 7, cumulative sag frequency at bus 1 for different s 

will be like Fig. 7. and is compared with fault position 

method. 

 

Case2: 

It is assumed that probability of fault events in initial 

points of lines is more than the other points. To reach 

this aim, the probability distribution of fault position is 

assumed to be as follow: 

 

2

2

(l l )

2.s
2

f (l) .e
s. 2π

− −− −− −− −

==== km
, l 0 l 20= ≤ ≤= ≤ ≤= ≤ ≤= ≤ ≤  (2) 

 

where, s is the spread coefficient from the initial points 

of the lines. 

According to above equation, Fig. 8 shows the 

probability of each point along the line. If Monte Carlo 

method is implemented with above probability 

distribution function with different s, cumulative sag 

frequency at node 1 will be like Fig. 9. The results are 

compared with fault position method. 

 

Case 3: 

It is assumed that probability of fault events in final 

points of lines is more than the other points of lines. For  

achievement of this aim, the probability distribution of 

fault position is assumed to be as follow: 

 

2

2

(l l )

2.s
2

f (l) .e
s. 2π

− −− −− −− −

==== km
,0 l 10 l≤ ≤ =≤ ≤ =≤ ≤ =≤ ≤ =  (3) 

where, s is the spread coefficient from the initial points 

of the lines. 

According to above equation, Fig. 10 shows the 

probability of each point along the line. If Monte Carlo 

method is implemented with above probability 

distribution function with different s, cumulative sag 

frequency at node 1 will be like Fig. 11. The results are 

compared with fault position method. 

It’s clear from case 1, case 2 and case 3 that fault 

position method fails in describing the variability of the 

actual performance of the network and gives only long-

term average values. The Monte Carlo approach 

provides richer results. 

 

6 Number of Iteration in Monte Carlo Method 

This section proposes a criterion for determination 

required number of iterations of Monte Carlo method 

based on characteristic behavior of Monte Carlo 

simulations. 
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Fig. 5 Comparison between Cumulative sags frequency at node 1 with Monte Carlo and fault position methods when faults are 

distributed uniformly. 

 

 

 
Fig. 6 Normal distribution of faults along the lines in distribution network with s = 1, 2.5, 5. 
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Fig. 7 Comparison between Cumulative sags frequency at node 1 with Monte Carlo and fault position method when faults are 

distributed like Fig. 6. 
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Fig. 8 Distribution of faults when the probability in initial points of line is more and spread coefficient is s = 1, 2.5, 5. 
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Fig. 9 Comparison between Cumulative sags frequency at node 1 with Monte Carlo and fault position method when faults are 

distributed like Fig. 8. 

 

 

 

Fig. 10 Distribution of faults when the probability in final points of line is more and spread coefficient is s = 1, 2.5, 5. 
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Fig. 11 Comparison between Cumulative sags frequency at node 1 with Monte Carlo and fault position method when faults are 

distributed like Fig. 10. 

 

 

6.1  Characteristic Behavior of Monte Carlo 

The amount of data generated by Monte Carlo 

simulation is huge. Only a very small sample of the 

results is presented here. Fig. 12 shows a characteristic 

behavior of Monte Carlo simulations for 40 years when 

faults are distributed uniformly. The system average rms 

variation frequency index at node 1 estimated via Monte 

Carlo simulation is shown in Fig. 12. 

The SARFI-0.9 resulting for each simulation and the 

average SARFI-0.9 calculated over the cumulative 

number of simulations are shown. Although the SARFI-

0.9 corresponding to each year is volatile, the average is 

rather stable. 

The outcomes of the Monte Carlo approach are 

average values calculated over different sample sizes. 

Therefore, the outcome of the Monte Carlo method 

distributes normally and the error in the estimate can be 

calculated building a confident interval for the actual 

mean value. 

In order to evaluate how accurate the last average 

value in Fig. 12 is, the sample standard deviation s is 

used to build a confidence interval for the expected 

SARFI-0.9. The standard deviation s correspond to the  

n = 40 simulations in Fig. 12 is about 1.58 and the 

average SARFI-0.9 calculated over the 40 previous 

values is 27.15. The 95% confidence interval results: 

 

1.96.s 1.96.s
(SARFI 0.9 ) X ,X

n n
µ

    
− = ∈ − +− = ∈ − +− = ∈ − +− = ∈ − +    

    
 (4) 

[[[[ ]]]](SARFI 0.9 ) 27.64,26.65µ− = ∈− = ∈− = ∈− = ∈  (5) 

 

where 1.96 is the critical value corresponding to a 95% 

of confidence of the normal distributed variable. 

It means that we are 95% sure that unknown population 

value of Monte Carlo simulation has captured within the 

interval. Equation shows that the error can be reducing 

by increasing the number of simulations. If the number 

of samples is less than 30, t-distributed must be used. 

 

6.2  Sample Size (Number of Iteration) 

Determination in Monte Carlo Method 

In general and in order to estimate mean of population 

to a bound d with (1-alpha) %100 confidence, the 

required sample size found as follows: 

 

2

/ 2z
n

d

α σ    
====         

 (6) 

 

The value of sigma in a population is unknown. It 

can be estimated by the standard deviation s from a 

prior sample. The value of n must be rounded upward to 

ensure that the sample size will be sufficient to achieve 

the specified reliability. d is known as margin of error 

and is a measure of the width of the confidence interval. 

/ 2
zα depends on alpha and is 1.96 for 5%=α . 

In the population of Monte Carlo simulation results, 

the value of sigma is unknown. A prior sample is 

selected as guide sample. To do this, in the presented 

algorithm in Monte Carlo method (Section 4), output 

results (SARFI-x) are calculated for different simulation 

times. The set of out put results is Monte Carlo guide 

sample. The sigma is estimated with standard deviation 

of guide sample. 
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By replacing the estimated sigma in Eq. 6 and with 

2/zα  = 1.96, the decreasing function of n (number of 

iteration) in term of d (margin of error) is obtained.  

In the left side of bending area in the diagram of 

decreasing function of n (number of iteration) in term of 

d (margin of error), Fig. 13, a few changes in d lead to 

great changes in number of iteration (n). Therefore, in 

the Monte Carlo method it's not at all worthwhile to 

apply many calculations to get only a bit improvement 

in d (margin of error) and it's advisable to consider the n 

(number of iteration) in bending point as required 

number of simulation time in Monte Carlo method. 

 

6.3  Case Study 

In order to become 0.95% sure that the estimation of 

SARFI-0.9 in bus 1 with characteristic behavior of Fig. 

12, isn’t more than d, a guide sample of SARFI-0.9 with 

length of 8 (for different simulation times) has been 

selected. The standard deviation of prior sample has 

been considered as standard deviation of population. 

Standard deviation of prior sample is s = 0.557. 

By replacing the standard deviation of this sample in 

Eq. 6, sample size is expressed as a function of d 

(margin of error). 

The diagram of sample size (n) as a function of d is 

shown in Fig. 13. It is clear that with a little decrease in 

error at A zone, the sample size (n) will have 

considerable growth. 

The estimation error difference in two Monte Carlo 

simulations with n = 49 and n = 81 (year) is only 0.04. 

In other words, it is advantage to choose sample size 

with n = 49 year a point in bending area of this diagram. 

 

 

 

 
Fig. 12 SARFI-0.9 for node 1 with 40 Monte Carlo simulations. 

 

 

 
Fig. 13 Sample sizes (n) in term of margin of error (d). 
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7 Conclusion 

This paper compares two most common methods in 

stochastic assessment of voltage sags (Fault Position 

and Monte Carlo methods). It is shown that if fault 

positions distributed uniformly along the lines, their 

results are similar. However, if fault positions along the 

line don’t distributed uniformly and the probability of 

fault positions in different points of each line be various, 

their results aren’t same. This conclusion is clear 

because in fault position method faults spread at equal 

distances for each line. Therefore, Monte Carlo method 

is more flexible than fault position method. Fault 

position provides mean value for stochastic assessment. 

Moreover, in these two methods number of fault 

position and iteration are unknown and simulation 

should be continuing till the results remain unaltered, 

this procedure requires a lot of computational efforts 

that are very time consuming in large networks. Since 

the behavior of results in Monte Carlo method is 

normal, a method based on characteristic behavior of 

Monte Carlo simulations has proposed to estimate 

iteration in Monte Carlo method. In this method, by 

forming a guide sample of results of Monte Carlo 

method and deriving standard deviation of it, number of 

irritation can be determined properly. 

 

Appendix 

In table I impedances of lines and transformers are 

presented. 

 

Table I Impedance of Lines (Ω/km) and transformer (Ω). 
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